A Nice Calculus Question Involving Trigonometry

  • Calculus
  • Trigonometry
  • Algebra
Published on Tue Jul 26 2022. Views
How I approached an interesting calculus question with differentiation.

Problem Statement

The maximum point on the curve with the equation y=xsin(x)y = x\sqrt{\sin(x)}, 0<x<π0 < x < \pi, is the point A. Show that the x-coordinate of point A satisfies the equation 2tan(x)+x=02\tan(x) + x = 0.

My Approach

First, let f(x)=xsin(x)f(x) = x\sqrt{\sin(x)}, and let's try to calculate its first derivative.

Apply the product rule:

f(x)=xg(x)+sin12(x)\begin{align*} f'(x) = x \cdot g'(x) + \sin^{\frac{1}{2}}(x) \end{align*}

Where g(x)g(x) is defined as follows:

g(x)=sin12(x)\begin{align*} g(x) &= \sin^{\frac{1}{2}}(x)\\ \end{align*}

Now, differentiate g(x)g(x) with the chain rule:

g(x)=12sin12(x)cos(x)\begin{align*} g'(x) &= \frac{1}{2} \sin^{-\frac{1}{2}}(x) \cdot \cos(x)\\ \end{align*}

Substituting g(x)g'(x) back into f(x)f'(x):

f(x)=x12sin12(x)cos(x)+sin12(x)=sin12(x)[1+x2cos(x)sin1(x)]\begin{align*} f'(x) &= x \cdot \frac{1}{2} \sin^{-\frac{1}{2}}(x) \cdot \cos(x) + \sin^{\frac{1}{2}}(x) \\ &= \sin ^ {\frac{1}{2}}(x)[1 + \frac{x}{2}\cos(x)\sin^{-1}(x)] \end{align*}

Given that a point A is a stationary point and thus its gradient is 0, we can form the following equation:

0=sin12(x)[1+x2cos(x)sin1(x)]\begin{align*} 0 &= \sin ^ {\frac{1}{2}}(x)[1 + \frac{x}{2}\cos(x)\sin^{-1}(x)] \end{align*}

Let's take a look at the two possible scenarios.

  1. sin12(x)=0\sin ^ {\frac{1}{2}}(x) = 0
 sin(x)=0 x=0,π\begin{align*} \therefore\space& \sin(x) = 0 \\ \therefore\space& x = 0, \pi \end{align*}

However, as given by the question, xx should be greater than 0 and smaller than π\pi, so this is certainly not the case.

What about the other possibility?

  1. [1+x2cos(x)sin1(x)]=0[1 + \frac{x}{2}\cos(x)\sin^{-1}(x)] = 0
[1+x2cos(x)sin1(x)]=0x2cos(x)sin1(x)=1\begin{align*} [1 + \frac{x}{2}\cos(x)\sin^{-1}(x)] &= 0 \\ \therefore \frac{x}{2}\cos(x)\sin^{-1}(x) &= -1 \\ \end{align*}
 x2cos(x)sin(x)=1 x2tan(x)=1 x=2tan(x) x+2tan(x)=0\begin{align*} \Longleftrightarrow\space& \frac{x}{2}\frac{\cos(x)}{\sin(x)} = -1 \\ \Longleftrightarrow\space& \frac{x}{2\tan(x)} = -1 \\ \Longleftrightarrow\space& x = -2 \tan(x) \\ \Longleftrightarrow\space& x + 2 \tan(x) = 0 \\ \end{align*}

Conclusion

Can't be bothered to write a conclusion today.