UKMT Maclaurin 2017: Q4

  • UKMT
  • UKMT Maclaurin
  • Geometry
  • Trigonometry
  • Algebra
Published on Mon Jul 04 2022. Views
Alternative trigonometry solution Q4 of UKMT Maclaurin 2017

The Question

The diagram shows a square PQRSPQRS with sides of length 2. The point TT is the midpoint of SRSR, and UU lies on RQRQ so that SPT\angle SPT = TPU\angle TPU.

What is the length of RURU?

Identities to Know

tan(90θ)=cot(θ)cot(θ)=1tan(θ)tan(2θ)=2tan(θ)1tan2(θ)\begin{align*} \tan(90 - \theta) &= {\cot(\theta)}\\ \cot(\theta) &= \frac{1}{\tan(\theta)}\\ \tan(2\theta) &= \frac{2\tan(\theta)}{1-\tan^2(\theta)}\\ \end{align*}

Solution with Trigonometry

Let α=SPT,β=UPQ,QU=y,UR=x\alpha = \angle SPT, \beta = \angle UPQ, QU = y, UR = x

tan(α)=STSP=12 α=tan1(12)\begin{align*} \tan(\alpha) &= \frac{ST}{SP} = \frac{1}{2}\\ \therefore\space\alpha &= \tan^{-1}(\frac{1}{2}) \end{align*}\\

Now, because tan(β)=UQQP=y2\tan(\beta) = \frac{UQ}{QP} = \frac{y}{2}, if we can workout the tan ratio for angle β\beta, we would be able to find yy.

β=902αtan(β)=tan(902α)=cot(2α)=1tan(2α)Let t=tan(2α)=2tan(α)1tan2(α) α=tan1(12)t=2tan(tan1(12))1[tan(tan1(12))]2\begin{align*} \beta &= 90 - 2\alpha\\ \\ \tan(\beta)&=\tan(90 - 2\alpha)=\cot(2\alpha)\\ &=\frac{1}{\tan(2\alpha)}\\ \\ Let\space t &= \tan(2\alpha)\\ &=\frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}\\ \because\space\alpha &= \tan^{-1}(\frac{1}{2})\\ t&=\frac{2 \cdot \tan(\tan^{-1}(\frac{1}{2}))}{1 - [\tan(\tan^{-1}(\frac{1}{2}))]^{2}} \end{align*}

Notice that tan\tan and tan1\tan^{-1} cancel out, and that means that we obtain the ratios without the need of a calculator.

 t=2121(12)2=1(34)t=43\begin{align*} \therefore\space t&=\frac{2 \cdot \frac{1}{2}}{1 - (\frac{1}{2})^2}\\ &=\frac{1}{(\frac{3}{4})}\\ t&=\frac{4}{3} \end{align*}

Now, going back to finding tan(β)\tan(\beta):

tan(β)=1t=34\begin{align*} \tan(\beta) &= \frac{1}{t}\\ &=\frac{3}{4} \end{align*}

That means:

34=UQQP=y2y=32x=2yx=12RU=12\begin{align*} \frac{3}{4}&=\frac{UQ}{QP}=\frac{y}{2}\\ \therefore y &= \frac{3}{2}\\ \\ \because x &= 2 - y\\ x &= \frac{1}{2} \Longleftrightarrow RU = \frac{1}{2} \end{align*}

Conclusion

There are many ways to solve a single geometry problem, thus you are encouraged to find different solutions to a question, and this is very helpful for enhancing your problem solving skills.